Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458579

RESUMO

Researchers looking for biomarkers from different sources, such as breath, urine, or blood, frequently search for specific patterns of volatile organic compounds (VOCs), often using pattern recognition or machine learning techniques. However, they are not generally aware that these patterns change depending on the source they use. Therefore, we have created a simple model to demonstrate that the distribution patterns of VOCs in fat, mixed venous blood, alveolar air, and end-tidal breath are different. Our approach follows well-established models for the description of dynamic real-time breath concentration profiles. We start with a uniform distribution of end-tidal concentrations of selected VOCs and calculate the corresponding target concentrations. For this, we only need partition coefficients, mass balance, and the assumption of an equilibrium state, which avoids the need to know the volatiles' metabolic rates and production rates within the different compartments.


Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Biomarcadores , Líquidos Corporais/química , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise
2.
J Breath Res ; 14(2): 026004, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31796655

RESUMO

Post-operative isoflurane has been observed to be present in the end-tidal breath of patients who have undergone major surgery, for several weeks after the surgical procedures. A major new non-controlled, non-randomized, and open-label approved study will recruit patients undergoing various surgeries under different inhalation anaesthetics, with two key objectives, namely (1) to record the washout characteristics following surgery, and (2) to investigate the influence of a patient's health and the duration and type of surgery on elimination. In preparation for this breath study using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), it is important to identify first the analytical product ions that need to be monitored and under what operating conditions. In this first paper of this new research programme, we present extensive PTR-TOF-MS studies of three major anaesthetics used worldwide, desflurane (CF3CHFOCHF2), sevoflurane ((CF3)2CHOCH2F), and isoflurane (CF3CHClOCHF2) and a fourth one, which is used less extensively, enflurane (CHF2OCF2CHFCl), but is of interest because it is an isomer of isoflurane. Product ions are identified as a function of reduced electric field (E/N) over the range of approximately 80 Td to 210 Td, and the effects of operating the drift tube under 'normal' or 'humid' conditions on the intensities of the product ions are presented. To aid in the analyses, density functional theory (DFT) calculations of the proton affinities and the gas-phase basicities of the anaesthetics have been determined. Calculated energies for the ion-molecule reaction pathways leading to key product ions, identified as ideal for monitoring the inhalation anaesthetics in breath with a high sensitivity and selectivity, are also presented.


Assuntos
Anestésicos Inalatórios/análise , Testes Respiratórios/métodos , Hidrocarbonetos Halogenados/análise , Espectrometria de Massas/métodos , Prótons , Compostos Orgânicos Voláteis/análise , Teoria da Densidade Funcional , Desflurano/análise , Eletricidade , Feminino , Humanos , Íons , Isoflurano/análise , Masculino , Sevoflurano/análise , Processamento de Sinais Assistido por Computador
3.
J Breath Res ; 14(2): 026010, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31829984

RESUMO

Real-time measurements of the differences in inhaled and exhaled, unlabeled and fully deuterated acetone concentration levels, at rest and during exercise, have been conducted using proton transfer reaction mass spectrometry. A novel approach to continuously differentiate between the inhaled and exhaled breath acetone concentration signals is used. This leads to unprecedented fine grained data of inhaled and exhaled concentrations. The experimental results obtained are compared with those predicted using a simple three compartment model that theoretically describes the influence of inhaled concentrations on exhaled breath concentrations for volatile organic compounds with high blood:air partition coefficients, and hence is appropriate for acetone. An agreement between the predicted and observed concentrations is obtained. Our results highlight that the influence of the upper airways cannot be neglected for volatiles with high blood:air partition coefficients, i.e. highly water soluble volatiles.


Assuntos
Acetona/análise , Testes Respiratórios/métodos , Exercício Físico/fisiologia , Expiração , Exposição por Inalação/análise , Descanso/fisiologia , Humanos , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
4.
Front Genet ; 10: 497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191612

RESUMO

Adult muscle carnitine palmitoyltransferase (CPT) II deficiency is a rare autosomal recessive disorder of long-chain fatty acid metabolism. It is typically associated with recurrent episodes of exercise-induced rhabdomyolysis and myoglobinuria, in most cases caused by a c.338C > T mutation in the CPT2 gene. Here we present the pedigree of one of the largest family studies of CPT II deficiency caused by the c.338C > T mutation, documented so far. The pedigree comprises 24 blood relatives of the index patient, a 32 year old female with genetically proven CPT II deficiency. In total, the mutation was detected in 20 family members, among them five homozygotes and 15 heterozygotes. Among all homozygotes, first symptoms of CPT II deficiency occurred during childhood. Additionally, two already deceased relatives of the index patient were carriers of at least one copy of the genetic variant, revealing a remarkably high prevalence of the c.338C > T mutation within the tested family. Beside the index patient, only one individual had been diagnosed with CPT II deficiency prior to this study and three cases of CPT II deficiency were newly detected by this family study, pointing to a general underdiagnosis of the disease. Therefore, this study emphasizes the need to raise awareness of CPT II deficiency for correct diagnosis and accurate management of the disease.

5.
J Breath Res ; 13(3): 036001, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818286

RESUMO

Breath analysis holds great promise for real-time and non-invasive medical diagnosis. Thus, there is a considerable need for simple-in-use and portable analyzers for rapid detection of breath indicators for different diseases in their early stages. Sensor technology meets all of these demands. However, miniaturized breath analyzers require adequate breath sampling methods. In this context, we propose non-contact sampling; namely the collection of breath samples by exhalation from a distance into a miniaturized collector without bringing the mouth into direct contact with the analyzing device. To evaluate this approach different breathing maneuvers have been tested in a real-time regime on a cohort of 23 volunteers using proton transfer reaction mass spectrometry. The breathing maneuvers embraced distinct depths of respiration, exhalation manners, size of the mouth opening and different sampling distances. Two inhalation modes (normal, relaxed breathing and deep breathing) and two exhalation manners (via smaller and wider lips opening) forming four sampling scenarios were selected. A sampling distance of approximately 2 cm was found to be a reasonable trade-off between sample dilution and requirement of no physical contact of the subject with the analyzer. All four scenarios exhibited comparable measurement reproducibility spread of around 10%. For normal, relaxed inspiration both dead-space and end-tidal phases of exhalation lasted approximately 1.5 s for both expiration protocols. Deep inhalation prolongs the end-tidal phase to about 3 s in the case of blowing via a small lips opening, and by 50% when the air is exhaled via a wide one. In conclusion, non-contact breath sampling can be considered as a promising alternative to the existing breath sampling methods, being relatively close to natural spontaneous breathing.


Assuntos
Testes Respiratórios/métodos , Respiração , Compostos Orgânicos Voláteis/química , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-30537625

RESUMO

Breath analysis offers a non-invasive and rapid diagnostic method for detecting various volatile organic compounds that could be indicators for different diseases, particularly metabolic disorders including type 2 diabetes mellitus. The development of type 2 diabetes mellitus is closely linked to metabolic dysfunction of adipose tissue and adipocytes. However, the VOC profile of human adipocytes has not yet been investigated. Gas chromatography with mass spectrometric detection and head-space needle trap extraction (two-bed Carbopack X/Carboxen 1000 needle traps) were applied to profile VOCs produced and metabolised by human Simpson Golabi Behmel Syndrome adipocytes. In total, sixteen compounds were identified to be related to the metabolism of the cells. Four sulphur compounds (carbon disulphide, dimethyl sulphide, ethyl methyl sulphide and dimethyl disulphide), three heterocyclic compounds (2-ethylfuran, 2-methyl-5-(methyl-thio)-furan, and 2-pentylfuran), two ketones (acetone and 2-pentanone), two hydrocarbons (isoprene and n-heptane) and one ester (ethyl acetate) were produced, and four aldehydes (2-methyl-propanal, butanal, pentanal and hexanal) were found to be consumed by the cells of interest. This study presents the first profile of VOCs formed by human adipocytes, which may reflect the activity of the adipose tissue enzymes and provide evidence of their active role in metabolic regulation. Our data also suggest that a previously reported increase of isoprene and sulphur compounds in diabetic patients may be explained by their production by adipocytes. Moreover, the unique features of this profile, including a high emission of dimethyl sulphide and the production of furan-containing VOCs, increase our knowledge about metabolism in adipose tissue and provide diagnostic potential for future applications.


Assuntos
Adipócitos/metabolismo , Arritmias Cardíacas/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Gigantismo/metabolismo , Cardiopatias Congênitas/metabolismo , Deficiência Intelectual/metabolismo , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Compostos Orgânicos Voláteis/metabolismo
7.
J Breath Res ; 12(3): 036011, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488464

RESUMO

In a recent paper (Unterkofler et al 2015 J. Breath Res. 9 036002) we presented a simple two compartment model which describes the influence of inhaled concentrations on exhaled breath concentrations for volatile organic compounds (VOCs) with small Henry constants. In this paper we extend this investigation concerning the influence of inhaled concentrations on exhaled breath concentrations for VOCs with higher Henry constants. To this end we extend our model with an additional compartment which takes into account the influence of the upper airways on exhaled breath VOC concentrations.


Assuntos
Testes Respiratórios/métodos , Modelos Biológicos , Compostos Orgânicos Voláteis/análise , Expiração , Humanos
8.
Analyst ; 141(15): 4796-803, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27241792

RESUMO

Selective reagent ionization time of flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS(NO(+))) in conjunction with gas chromatography (GC) and head-space solid-phase microextraction (HS-SPME) was used to determine selected volatile organic compounds in human urine. A total of 16 volatiles exhibiting high incidence rates were quantified in the urine of 19 healthy volunteers. Amongst them there were ten ketones (acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, and 4-heptanone), three volatile sulphur compounds (dimethyl sulfide, allyl methyl sulfide, and methyl propyl sulfide), and three heterocyclic compounds (furan, 2-methylfuran, 3-methylfuran). The concentrations of the species under study varied between 0.55 nmol L(-1) (0.05 nmol mmol(-1)creatinine) for allyl methyl sulfide and 11.6 µmol L(-1) (1.54 µmol mmol(-1)creatinine) for acetone considering medians. Limits of detection (LODs) ranged from 0.08 nmol L(-1) for allyl methyl sulfide to 1.0 nmol L(-1) for acetone and furan (with RSDs ranging from 5 to 9%). The presented experimental setup assists both real-time and GC analyses of volatile organic compounds, which can be performed consecutively using the same analytical system. Such an approach supports the novel concept of hybrid volatolomics, an approach which combines VOC profiles obtained from two or more body fluids to improve and complement the chemical information on the physiological status of an individual.

9.
Curr Med Chem ; 23(20): 2112-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27160536

RESUMO

Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication:This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research.


Assuntos
Compostos Orgânicos Voláteis/análise , Aldeído Desidrogenase/metabolismo , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/urina , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Estresse Oxidativo
10.
J Breath Res ; 10(1): 017105, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828421

RESUMO

We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane.


Assuntos
Testes Respiratórios , Exercício Físico/fisiologia , Metano/análise , Modelos Biológicos , Ergometria , Humanos
11.
J Breath Res ; 10(1): 017103, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26815030

RESUMO

In this article, a database of blood:air and fat:air partition coefficients (λ b:a and λ f:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry's law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry's constant values was built. The calculated Henry's law constants correlate very well (R(2) test = 0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry's constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R(2) = 0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis/análise , Humanos , Modelos Teóricos
12.
J Breath Res ; 9(3): 036002, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25972041

RESUMO

In this paper we develop a simple two compartment model which extends the Farhi equation to the case when the inhaled concentration of a volatile organic compound (VOC) is not zero. The model connects the exhaled breath concentration of systemic VOCs with physiological parameters such as endogenous production rates and metabolic rates. Its validity is tested with data obtained for isoprene and inhaled deuterated isoprene-D5.


Assuntos
Acetona/química , Testes Respiratórios/instrumentação , Butadienos/química , Expiração/fisiologia , Hemiterpenos/química , Modelos Teóricos , Pentanos/química , Compostos Orgânicos Voláteis/química , Testes Respiratórios/métodos , Feminino , Humanos , Masculino , Projetos Piloto
13.
Cell Biochem Biophys ; 71(1): 323-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25123840

RESUMO

Gas chromatography with mass spectrometric detection combined with head-space needle trap extraction as the pre-concentration technique was applied to identify and quantify volatile organic compounds released or metabolised by human umbilical vein endothelial cells. Amongst the consumed species there were eight aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, n-hexanal, benzaldehyde, n-octanal and n-nonanal) and n-butyl acetate. Further eight compounds (ethyl acetate, ethyl propanoate, ethyl butyrate, 3-heptanone, 2-octanone, 2-nonanone, 2-methyl-5-(methylthio)-furan and toluene) were found to be emitted by the cells under study. Possible metabolic pathways leading to the uptake and release of these compounds by HUVEC are proposed and discussed. The uptake of aldehydes by endothelial cells questions the reliability of species from this chemical class as breath or blood markers of disease processes in human organism. The analysis of volatiles released or emitted by cell lines is shown to have a potential for the identification and assessment of enzymes activities and expression.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Métodos Analíticos de Preparação de Amostras , Transporte Biológico , Cromatografia Gasosa-Espectrometria de Massas , Humanos
14.
J Breath Res ; 8(4): 046003, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307263

RESUMO

Knowledge of the release of volatile organic compounds (VOCs) by cells provides important information on the origin of VOCs in exhaled breath. Muscle cells are particularly important, since their release of volatiles during the exertion of an effort contributes considerably to breath concentration profiles. Presently, the cultivation of human skeletal muscle cells is encountering a number of obstacles, necessitating the use of animal muscle cells in in vitro studies. Rat L6 skeletal muscle cells are therefore commonly used as a model for studying the molecular mechanisms of human skeletal muscle differentiation and functions, and facilitate the study of the origin and metabolic fate of the endogenously produced compounds observed in breath and skin emanations. Within this study the production and uptake of VOCs by rat L6 skeletal muscle cells were investigated using gas chromatography with mass spectrometric detection, combined with head-space needle trap extraction as the pre-concentration technique (HS-NTE-GC-MS). Seven compounds were found to be produced, whereas sixteen species were consumed (Wilcoxon signed-rank test, p < 0.05) by the cells being studied. The set of released volatiles included two ketones (2-pentanone and 2-nonanone), two volatile sulphur compounds (dimethyl sulfide and methyl 5-methyl-2-furyl sulphide), and three hydrocarbons (2-methyl 1-propene, n-pentane and isoprene). Of the metabolized species there were thirteen aldehydes (2-propenal, 2-methyl 2-propenal, 2-methyl propanal, 2-butenal, 2-methyl butanal, 3-methyl butanal, n-pentanal, 2-methyl 2-butenal, n-hexanal, benzaldehyde, n-octanal, n-nonanal and n-decanal), two esters (n-propyl propionate and n-butyl acetate), and one volatile sulphur compound (dimethyl disulfide). The possible metabolic pathways leading to the uptake and release of these compounds by L6 cells are proposed and discussed. An analysis of the VOCs showed them to have huge potential for the identification and monitoring of some molecular mechanism and conditions.


Assuntos
Células Musculares/metabolismo , Músculo Esquelético/citologia , Compostos Orgânicos Voláteis/análise , Animais , Linhagem Celular , Expiração , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Masculino , Ratos , Reprodutibilidade dos Testes , Fatores de Tempo
15.
Rapid Commun Mass Spectrom ; 28(15): 1683-90, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975248

RESUMO

RATIONALE: The reactions of NO(+) with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO(+) ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS: Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds - dimethyl selenide and dimethyl diselenide. RESULTS: Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M(+) cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO(+) M, formed by ion-molecule association, and [M-H](+) ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)(+) * adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3 , CH4 and/or C2 H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS: The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO(+) mode.


Assuntos
Biopolímeros/química , Óxidos de Nitrogênio/química , Compostos Organosselênicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos de Enxofre/química , Compostos Orgânicos Voláteis/química , Biopolímeros/análise , Indicadores e Reagentes/química , Óxidos de Nitrogênio/análise , Compostos Organosselênicos/análise , Compostos de Enxofre/análise , Compostos Orgânicos Voláteis/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-24768920

RESUMO

Gas chromatography with mass spectrometric detection (GC-MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4,790 fmol cm(-2)min(-1). Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm(-2)min(-1). Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR).


Assuntos
Pele/química , Compostos Orgânicos Voláteis/química , Adulto , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Pele/metabolismo , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo , Adulto Jovem
17.
Anal Chem ; 86(8): 3915-23, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24611620

RESUMO

Selective reagent ionization time-of-flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS (NO(+))) was applied for near real-time monitoring of selected skin-borne constituents which are potential markers of human presence. The experimental protocol involved a group of 10 healthy volunteers enclosed in a body plethysmography chamber mimicking the entrapment environment. A total of 12 preselected omnipresent in human scent volatiles were quantitatively monitored. Among them there were six aldehydes (n-propanal, n-hexanal, n-heptanal, n-octanal, n-nonanal, and 2 methyl 2-propenal), four ketones (acetone, 2-butanone, 3-buten-2-one, and 6-methyl-5-hepten-2-one), one hydrocarbon (2-methyl 2-pentene), and one terpene (DL-limonene). The observed median emission rates ranged from 0.28 to 44.8 nmol × person(-1) × min(-1) (16-1530 fmol × cm(-2) × min(-1)). Within the compounds under study, ketones in general and acetone in particular exhibited the highest abundances. The findings of this study provide invaluable information about formation and evolution of a human-specific chemical fingerprint, which could be used for the early location of entrapped victims during urban search and rescue operations (USaR).


Assuntos
Biomarcadores/análise , Pele/química , Adulto , Aldeídos/análise , Feminino , Humanos , Indicadores e Reagentes , Cetonas/análise , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Óxido Nítrico/química , Pletismografia , Trabalho de Resgate , Compostos Orgânicos Voláteis/análise , Adulto Jovem
18.
BMC Nephrol ; 15: 43, 2014 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-24607025

RESUMO

BACKGROUND: Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment. METHODS: Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as pre-concentration method. RESULTS: A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients. Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide, thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment. CONCLUSIONS: Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.


Assuntos
Testes Respiratórios , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Diálise Renal/efeitos adversos , Uremia/etiologia , Uremia/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
19.
Int J Mass Spectrom ; 363: 23-31, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844049

RESUMO

Product ion distributions for the reactions of NO+ with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2-C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M-H)+ ions. Small fractions of the adduct ion, NO+M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M+ parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO+ mode.

20.
Cancer Cell Int ; 13(1): 72, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23870484

RESUMO

BACKGROUND: Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. METHODS: The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. RESULTS: A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. CONCLUSIONS: The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA